
De prompts sueltos a agentes

• Hasta ahora vimos:

• Transformers, atención, fine-tuning

• Prompting basico y RA

• Limitación: todo eso suele ser una llamada aislada al modelo

• En producción necesitamos:

• Múltiples pasos

• Estado / memoria

• Llamar APIs, BDs, RAG, etc.

• Controlar errores, reintentos, límites

¿Qué es un agente?
Un agente es un sistema que usa un LLM para tomar decisiones paso a paso, llamar
herramientas y mantener estado para cumplir un objetivo del usuario.

Componentes típicos:

• Objetivo o tarea (goal)

• Contexto / memoria

• Modelo de lenguaje (LLM)

• Tools (acciones externas)

• Ciclo de razonamiento:
• Pensar → decidir → actuar → observar → repetir

Comparación:

• Prompt “clásico”: función pura input → output

• Agente: bucle estado + input → nuevo estado + acciones + output

¿Por qué agentes?
Casos donde un sólo prompt no alcanza:

• Flujos multi-paso:
• “Reservá un vuelo, verificá clima, proponé 2 opciones y fijate mi presupuesto”

• Integraciones complejas:
• CRM + base de tickets + documentación interna

• Ajuste incremental:
• El usuario corrige, agrega contexto, cambia de idea

• Tareas largas:

• Investigar, resumir, proponer plan, iterar sobre feedback

Beneficios:

• Automatizan workflows, no sólo respuestas.

• Hacen explícito el flujo de decisiones.

Anatomía de un agente LLM
Usuario → (Mensaje) → Agente → (Respuestas + acciones)

Dentro del agente:

• State:

• Historial de mensajes

• Memoria (resumen, entidades, preferencias)

• Variables de trabajo (ej. “ticket_id”, “carrito_compra”)

• Reasoner (LLM):

• Interpreta el estado actual

• Decide próxima acción (tool a llamar / respuesta / pregunta)

• Tools:

• Funciones externas (APIs, RAG, bases de datos, etc.)

• Policies:
• Reglas de seguridad, límites, fallback

¿Qué es una “tool”?
Tool = acción externa que el LLM puede pedir ejecutar.

Ejemplos:

• buscar_productos(query)

• consultar_stock(product_id)

• run_sql(query_sql)

• rag_search(question)

• enviar_correo(destinatario, asunto, cuerpo)

• programar_reunion(fecha, asistentes)

Características:

• Tienen input bien tipado

• Tienen output estructurado

• Hacen algo fuera del LLM (datos frescos, efectos en el mundo real)

Diseño de tools

Buenas prácticas:

• Inputs y outputs explícitos (tipos, campos, unidades)

• Hacer tools pequeñas y composables:
• Mejor 3 tools simples que 1 mega-tool confusa

• Pensar en idempotencia:
• ¿Qué pasa si el LLM la llama dos veces?

• Manejo de errores:
• Mensajes claros de “no encontré X”, “timeout”, etc.

• Limitar poder:

• Tools peligrosas (borrar datos, enviar dinero) con más checks / sandbox

LLM + tools: ciclo de interacción
Patrón típico:

• Usuario manda mensaje

• Agente arma un “prompt de pensamiento”:
• Historial relevante

• Estado actual

• Descripción de las tools disponibles

• El LLM decide:

• Responder directamente
• O pedir usar una tool con ciertos argumentos

• El runtime ejecuta la tool

• El resultado vuelve al LLM

• El LLM genera la respuesta final (o pide otra tool)

• Se actualiza el estado / memoria

Patrones comunes de agentes – Basic LLM

Patrones comunes de agentes - Prompt chaining

Patrones comunes de agentes - Routing

Patrones comunes de agentes - Parallelization

Patrones comunes de agentes - Orchestrator

Patrones comunes de agentes - Evaluator

La pila de protocolos

Contexto actual:

• Grandes players (Google, Anthropic, OpenAI, Microsoft…) están
empujando estándares para:
• Conectar agentes a datos y herramientas

• Hacer que agentes hablen entre sí

• Conectar agentes con interfaces de usuario ricas y en tiempo real

Tres capas clave que vamos a mirar:

• MCP – Model Context Protocol → agentes datos / herramientas

• A2A – Agent2Agent Protocol → agentes agentes

• AG-UI – Agent–User Interaction Protocol → agentes frontends

MCP – Model Context Protocol
¿Qué es MCP?

Estándar abierto para conectar aplicaciones de IA con fuentes de datos y herramientas externas.

• Nace del ecosistema Anthropic / Claude, pero es abierto.

• Un puerto estándar para enchufar:
• BDs, APIs, sistemas internos

• Herramientas (search, cálculos, workflows)

• Repositorios de prompts / workflows

Conceptos clave:

• MCP server: expone tools y recursos (archivos, queries, etc.)

• MCP client: tu agente / aplicación que consume esos tools

• Tools tienen:

• Nombre único

• Esquema de inputs/outputs tipado

• Metadata de permisos y contexto

MCP – Model Context Protocol

A2A – Agent2Agent Protocol
¿Qué es A2A?

Protocolo abierto para que agentes de distintos vendors y frameworks puedan comunicarse y coordinarse entre sí.

• Originalmente impulsado por Google y donado a la Linux Foundation.

• Objetivo: que un agente de:

• Google / Vertex,

• OpenAI / LangGraph,

• Vendor X en otra nube

▪ puedan hablar un mismo “idioma” estructurado.

¿Qué resuelve?

• Descubrimiento de agentes (“qué sabes hacer vos?”)

• Mensajes estructurados (intents, respuestas, errores)

• Seguridad / autenticación entre organizaciones

• Coordinación:

• Agente “usuario” agente “comercio”

• Agente “soporte” agente “facturación”

AG-UI – Agent–User Interaction Protocol
¿Qué es AG-UI?

Protocolo abierto y ligero para estandarizar cómo los agentes se conectan con aplicaciones de usuario
(web, mobile, etc.).

• Se centra en el canal tiempo real entre:

• Backend agéntico (LangGraph, Agent Framework, etc.)

• Frontend (React, Next.js, móviles…)

Qué define AG-UI:

• Eventos estándar:
• Mensajes de chat, streaming de tokens

• Tool calls (y su render en UI)

• Actualización de estado compartido (p. ej. un panel, formulario)

• Threads / sesiones desde el lado UI

• Patrones para:
• Human-in-the-loop

• Mostrar planes, pasos, errores.

Cómo encajan MCP, A2A y AG-UI
Capa UI (User Agente)

• AG-UI: eventos, estado compartido, streaming

• Frameworks: React + CopilotKit, Agent Framework, etc.

Capa Agente / Orquestación

• LangGraph, LangChain, Vertex ADK, OpenAI Agents SDK

• Definen:
• Estado del agente

• Tools internas (RAG, BDs, APIs)

• Memoria, seguridad, routing

Capa Conectores / Datos / Otros agentes

• MCP: conectar con datos y tools externos estándar

• A2A: hablar con otros agentes, internos o de terceros

• Otros protocolos emergentes (pagos AP2, credenciales, etc.)

