De prompts sueltos a agentes

Hasta ahora vimos:
Transformers, atencion, fine-tuning
Prompting basico y RA

Limitacion: todo eso suele ser una llamada aislada al modelo

En produccion necesitamos:
Mdltiples pasos
Estado / memoria
Llamar APls, BDs, RAG, etc.

Controlar errores, reintentos, limites



;Quée es un agente?

Un agente es un sistema que usa un LLM para tomar decisiones paso a paso, llamar
herramientas y mantener estado para cumplir un objetivo del usuario.

Componentes tipicos:
Objetivo o tarea (goal)
Contexto / memoria
Modelo de lenguaje (LLM)
Tools (acciones externas)

Ciclo de razonamiento:
Pensar — decidir — actuar — observar — repetir

Comparacion:
Prompt “clasico”: funcion pura input - output

Agente: bucle estado + input - nuevo estado + acciones + output



;Por qué agentes?

Casos donde un sélo prompt no alcanza:

Flujos multi-paso:
“Reserva un vuelo, verifica clima, proponé 2 opciones y fijate mi presupuesto”

Integraciones complejas:
CRM + base de tickets + documentacion interna

Ajuste incremental:
El usuario corrige, agrega contexto, cambia de idea

Tareas largas:
Investigar, resumir, proponer plan, iterar sobre feedback

Beneficios:
Automatizan workflows, no sdlo respuestas.

Hacen explicito el flujo de decisiones.



Anatomia de un agente LLM

Usuario — (Mensaje) — Agente — (Respuestas + acciones)
Dentro del agente:

State:
Historial de mensajes
Memoria (resumen, entidades, preferencias)
Variables de trabajo (ej. “ticket_id”, “carrito_compra”)

Reasoner (LLM):
Interpreta el estado actual
Decide proxima accion (tool a llamar / respuesta / pregunta)

- Tools:
Funciones externas (APIs, RAG, bases de datos, etc.)

Policies:
Reglas de seguridad, limites, fallback



;Qué es una “tool”?

Tool = accion externa que el LLM puede pedir ejecutar.

Ejemplos:

buscar_productos(query)

consultar_stock(product_id)

run_sqgl(query sql)

rag_search(question)

enviar_correo(destinatario, asunto, cuerpo)

programar_reunion(fecha, asistentes)
Caracteristicas:

Tienen input bien tipado

Tienen output estructurado

Hacen algo fuera del LLM (datos frescos, efectos en el mundo real)



Diseno de tools

Buenas practicas:
Inputs y outputs explicitos (tipos, campos, unidades)

Hacer tools pequeihas y composables:
Mejor 3 tools simples que 1 mega-tool confusa

Pensar en idempotencia:
;Qué pasa si el LLM la llama dos veces?

Manejo de errores:
Mensajes claros de “no encontré X”, “timeout”, etc.

Limitar poder:

- Tools peligrosas (borrar datos, enviar dinero) con mas checks / sandbox



LLM + tools: ciclo de interaccion

Patron tipico:
Usuario manda mensaje

Agente arma un “prompt de pensamiento”:
Historial relevante
Estado actual

Descripcion de las tools disponibles

El LLM decide:

Responder directamente
O pedir usar una tool con ciertos argumentos

El runtime ejecuta la tool

El resultado vuelve al LLM

EL LLM genera la respuesta final (o pide otra tool)
Se actualiza el estado / memoria

Action

Query

/4

Observation

Answer




Patrones comunes de agentes - Basic LLM

In - - LLM > Out
\ 'y
Query/ Ca;ll/ Read/
Results Response Write
Retrieval | Memory

Tools



Patrones comunes de agentes - Prompt chaining

LLM Call 2 LLM Call 3 Out
Output 2

In LLM Call 1 Gate
Output 1



Patrones comunes de agentes - Routing

> | LLMcCall1

In —_—) i SELEELEL LLM Call 2 SEEELD> Out
Router

LLM Call 3



Patrones comunes de agentes - Parallelization

> | LLMcall1
In | —>  LLMCGCall2 —> | Aggregator | —> | Out

LLM Call 3



Patrones comunes de agentes - Orchestrator

LLM Call1
In ——>  Orchestrator ---==> | LLMCall 2 -==-=--> | Synthesizer —> | Out

LLM Call 3



Patrones comunes de agentes - Evaluator

Solution

LLM Call LLM Call
In - QOut
Generator Evalvator
Accepted

Rejected +
Feedback



La pila de protocolos

Contexto actual:

- Grandes players (Google, Anthropic, OpenAl, Microsoft..) estan
empujando estandares para:
- Conectar agentes a datos y herramientas

- Hacer que agentes hablen entre si
- Conectar agentes con interfaces de usuario ricas y en tiempo real

Tres capas clave que vamos a mirar:
- MCP - Model Context Protocol — agentes <> datos / herramientas
- A2A - Agent2Agent Protocol — agentes < agentes

- AG-Ul - Agent-User Interaction Protocol — agentes < frontends



MCP - Model Context Protocol

;Qué es MCP?
Estandar abierto para conectar aplicaciones de IA con fuentes de datos y herramientas externas.
Nace del ecosistema Anthropic / Claude, pero es abierto.

Un puerto estandar para enchufar:
BDs, APls, sistemas internos
Herramientas (search, calculos, workflows)
Repositorios de prompts / workflows

Conceptos clave:
MCP server: expone tools y recursos (archivos, queries, etc.)
MCP client: tu agente / aplicacion que consume esos tools

Tools tienen:
Nombre Unico
Esquema de inputs/outputs tipado

Metadata de permisos Y contexto



MCP - Model Context Protocol

@ docker.desktop susi Q search ®@ 4 & &

Ask Gordon

MCP Toolkit

Containers

Images
Servers (2) Catalog (124) Clients

Volumes
Builds
Models

Highlighted
MCP Toolkit

Docker Hub DS AstraDB Atlassian @ DuckDuckGo @ Elasticsearch

Docker Scout

Extensions

Manage

@ VP Tookkit
Fetch (Reference) Git (Reference) ‘ ’ GitHub Official Q Grafana

Kong Konnect l MongoDB




A2A - AgentZ2Agent Protocol

;Qué es A2A?
Protocolo abierto para que agentes de distintos vendors y frameworks puedan comunicarse y coordinarse entre si.
Originalmente impulsado por Google y donado a la Linux Foundation.

Objetivo: que un agente de:
Google / Vertex,
OpenAl / LangGraph,
Vendor X en otra nube

puedan hablar un mismo “idioma” estructurado.

;Qué resuelve?
Descubrimiento de agentes (“qué sabes hacer vos?”)
Mensajes estructurados (intents, respuestas, errores)
Seguridad / autenticacion entre organizaciones

Coordinacion:
Agente “usuario” «» agente “comercio”
Agente “soporte” <> agente “facturacion”



AG-Ul - Agent-User Interaction Protocol

;Qué es AG-UI?

Protocolo abierto y ligero para estandarizar como los agentes se conectan con aplicaciones de usuario
(web, mobile, etc.).
Se centra en el canal tiempo real entre:
Backend agéntico (LangGraph, Agent Framework, etc.)
Frontend (React, Next.js, moviles...)

Qué define AG-UI:

Eventos estandar:
Mensajes de chat, streaming de tokens
Tool calls (y su render en Ul)
Actualizacion de estado compartido (p. ej. un panel, formulario)

Threads / sesiones desde el lado Ul

Patrones para:
Human-in-the-loop
Mostrar planes, pasos, errores.



Como encajan MCP, A2A y AG-UI

Capa Ul (User <+ Agente)
AG-Ul: eventos, estado compartido, streaming
Frameworks: React + CopilotKit, Agent Framework, etc.

The Agent Protocol Stack

< -]

Capa Agente / Orquestacion o o 8
LangGraph, LangChain, Vertex ADK, OpenAl Agents SDK

Definen: @

Estado del agente mce AGENT

Tools internas (RAG, BDs, APlIs)
Memoria, seguridad, routing

Capa Conectores / Datos / Otros agentes
MCP: conectar con datos y tools externos estandar g

A2A: hablar con otros agentes, internos o de terceros -

B

4

AG-UI

Otros protocolos emergentes (pagos AP2, credenciales, etc.)



