
UT5

Machine Learning Operations
Fundamentos del Aprendizaje Automático

Profesor: Ing. Juan Francisco Kurucz

juan.kuruczsosa@ucu.edu.uy



Production ML Systems, MLOps y deuda técnica

• Hoy: ¿qué pasa después de entrenar un modelo en el notebook?

• Introducción a MLOps: procesos, personas y herramientas.

• Veremos:

• Por qué el modelo es solo una pequeña parte del sistema.

• Conceptos de CI/CD, entrenamiento continuo y monitoreo de modelos.

• Riesgos de deuda técnica en sistemas de ML.



¿Por qué no alcanza con tener “0.95 de accuracy”?

• En el notebook:

• Datos limpios, bien armados.

• Un solo dataset, sin cambios en el tiempo.

• Métrica bonita en el test set .

• En producción:

• Los datos cambian (nuevos usuarios, nuevos formatos, nuevas reglas de negocio).

• Nuevas versiones de la app / backend cambian el flujo de información.

• Hay latencia, costos de cómputo, fallas de red, permisos, etc.

• Idea clave:

• El modelo es una pieza más dentro de un sistema mucho más grande.

• Sin procesos y automatización, el modelo “se pudre” rápido.



¿Qué es MLOps?

• Inspirado en DevOps, pero aplicado a sistemas de ML.

• Conjunto de prácticas, procesos y herramientas para:

o Desarrollar, entrenar y desplegar modelos de forma 

repetible y confiable.

o Automatizar el ciclo de vida completo de ML: datos → 

entrenamiento → deploy → monitoreo → retraining.

• Objetivo central:

o Reducir fricción entre investigación (data science) y 

producción (ingeniería).

o Evitar “modelos cajón” que nunca llegan a producción o 

se rompen al primer cambio.



El modelo es solo el 5% del sistema

• En un sistema real de ML también tenemos:

• Ingesta de datos (logs, eventos, bases).

• Validación y limpieza de datos.

• Feature engineering y pipelines de features.

• Infraestructura de entrenamiento (jobs, GPUs, colas).

• Infraestructura de servicio (APIs, endpoints, escalado).

• Monitoreo y alertas.

• En la práctica:

• El código del modelo suele ser una fracción pequeña del código total.

• Mensaje para estudiantes:

• MLOps es aprender a diseñar y cuidar todo el ecosistema alrededor del modelo, no 
solo la red neuronal / algoritmo.



Ciclo de vida de un modelo en producción

• Fases típicas:

1. Entender el problema y definir métricas.

2. Recolectar y preparar datos.

3. ️Entrenar y tunear modelos.

4. Evaluar vs. métricas de negocio y técnicas.

5. Desplegar modelo a producción.

6. Monitorear datos, métricas, errores.

7. Reentrenar y volver a desplegar (ciclo continuo).

• Lo importante:

1. Pasar de un ciclo manual y ad-hoc a uno automatizado y reproducible (pipelines).

2. Cada paso idealmente versionado y testeado.



Componentes clave de MLOps

• Pipelines de datos (ETL/ELT):

o Extraer, transformar, cargar datos de forma confiable.

• Pipelines de entrenamiento:
o Jobs que entrenan modelos usando datos actualizados.

• Pipelines de validación:
o Chequear calidad de datos y performance del modelo antes de promoverlo.

• Pipelines de deployment (CI/CD):
o Empaquetar y desplegar modelos / servicios de inferencia.

• Monitoreo y alertas:

o Controlar el comportamiento en producción (latencia, errores, drift).

o MLOps integra todo esto en un flujo automático, no en scripts sueltos.



CI/CD adaptado a ML

• CI (Continuous Integration):

• Tests de código: unidades, integración.

• Tests de datos: schemas, rangos, valores faltantes.

• Tests del modelo: sanidad básica (métricas mínimas, outputs válidos).

• CD (Continuous Delivery/Deployment):

• Automatizar despliegue de:

• Código de pipelines (orquestadores).

• Servicios de inferencia (APIs / endpoints).

• Estrategias de rollout:

• Canary, A/B tests, blue/green.

• Diferencia importante vs DevOps clásico:
• Además de código, hay que gestionar versionado de datos y modelos.



Entrenamiento continuo (Continuous Training)
• Idea:

1. El modelo se reentrena de forma regular cuando:

▪ Llegan datos nuevos.

▪ Cambian las distribuciones.
▪ Cambia una regla de negocio.

• Pipeline típico de CT:
1. Detectar evento (nuevos datos / tiempo).

2. Ejecutar pipeline de entrenamiento.

3. Evaluar contra modelo actual.

4. Solo promover si mejora (gate de métricas).

• Beneficio:
• El modelo se mantiene alineado con la realidad sin hacerlo “a mano”.

• Riesgo:
• Si no hay buenos tests/monitoreo, podés romper producción más rápido.



Monitoreo de modelos en producción
• ¿Qué monitoreamos?

• Métricas de negocio: conversión, engagement, churn, etc.

• Métricas del modelo: accuracy, recall, calibration (donde se pueda medir).

• Métricas de datos:

▪ Input drift: cambian las características de los datos de entrada.

▪ Prediction drift: cambian las distribuciones de las predicciones.

• Latencia y errores del servicio.

• Ejemplo (Vertex AI / plataformas similares):

• Configurar “model monitoring” para:

▪ Ver si cambian las distribuciones de features.

▪ Disparar alertas cuando algo se sale de lo esperado.

• Sin monitoreo:

• Tenés un modelo “a ciegas” que puede estar dañando el negocio sin que nadie se entere.



“Rules of ML”: priorizar el sistema sobre el 
modelo

• Regla 1: Empezá simple.

o Primero un modelo básico → validar pipeline y datos.

• Regla 2: Invertí en el pipeline, no en hiper-optimizar el modelo al principio.

o La mayoría de las mejoras vienen de mejores datos / features.

• Regla 3: Evitá training-serving skew.

o Usar mismas transformaciones y features en entrenamiento y producción.

o Loguear lo que ve el modelo en producción.

• Regla 4: No tires datos “viejos” sin pensar.

o Podés usar muestreo en vez de borrar, o al menos entender qué se pierde.

• Regla 5: Medí todo desde el día 1.

o Métricas y logs pensados desde el diseño.



“Hidden Technical Debt” en sistemas de ML
• Idea central (Sculley et al., NIPS 2015):

• Los sistemas de ML acumulan deuda técnica oculta más rápido que el software tradicional.

• Fuentes típicas de deuda:
• Glue code y “pipeline jungle”:

▪ Muchos scripts, parches y conexiones frágiles.

• Dependencias de datos:

▪ Cambia una columna y rompe todo el pipeline.

• Feedback loops no controlados:

▪ El modelo afecta los datos futuros (ej: sistemas de recomendación).
• Configuraciones y parámetros escondidos:

▪ Es difícil reproducir resultados o entender qué versión está en producción.

• Rol de MLOps:
• Hacer explícito lo que antes era “magia”.

• Estandarizar pipelines, versionar modelos/datos, poner tests y monitoreo.


