UT5 P

,///
@ //
/

Machine Learnlng,Operatlons
Fundamentos del Aprendizaje Automatico &). ﬁ‘

\@ !
Profesor: Ing. Juan Francisco Kurucz .

@ ¢ ?

Production ML Systems, MLOps y deuda técnica

Hoy: jqué pasa después de entrenar un modelo en el notebook?
Introduccion a MLOps: procesos, personas y herramientas.

- Veremos:
Por qué el modelo es solo una pequena parte del sistema.
Conceptos de CI/CD, entrenamiento continuo y monitoreo de modelos.
Riesgos de deuda técnica en sistemas de ML.

;Por gué no alcanza con tener “0.95 de accuracy”?

En el notebook:
Datos limpios, bien armados.
Un solo dataset, sin cambios en el tiempo.
Métrica bonita en el test set & .

En produccion:
Los datos cambian (nuevos usuarios, nuevos formatos, nuevas reglas de negocio).
Nuevas versiones de la app / backend cambian el flujo de informacion.
Hay latencia, costos de computo, fallas de red, permisos, etc.

|dea clave:

El modelo es una pieza mas dentro de un sistema mucho mas grande.
Sin procesos y automatizacion, el modelo “se pudre” rapido.

;Quée es MLOps?

- Inspirado en DevOps, pero aplicado a sistemas de ML.

Model
ﬂ Manage and
Operate Model

Operations

o Desarrollar, entrenar y desplegar modelos de forma
repetible y confiable.

o Automatizar el ciclo de vida completo de ML: datos —
entrenamiento — deploy — monitoreo — retraining.

[¢)
o
m
s
E
N

Build and Test

° ObjetIVO Centl"al with Cl Pipeline ?Aonlit;\)lxc:qd
o Reducir friccion entre investigacion (data science) y
produccion (ingenieria).
o Evitar “modelos cajon” que nunca llegan a produccion o
se rompen al primer cambio.

El modelo es solo el 5% del sistema

En un sistema real de ML también tenemos:
Ingesta de datos (logs, eventos, bases).
Validacion y limpieza de datos.
Feature engineering y pipelines de features.
Infraestructura de entrenamiento (jobs, GPUs, colas).
Infraestructura de servicio (APIs, endpoints, escalado).
Monitoreo y alertas.

En la practica:

El cddigo del modelo suele ser una fraccion pequenia del cédigo total.

Mensaje para estudiantes:

MLOps es aprender a disenar y cuidar todo el ecosistema alrededor del modelo, no
solo la red neuronal / algoritmo.

Ciclo de vida de un modelo en produccion

Fases tipicas:
1. Entender el problema y definir métricas.
2. Recolectar y preparar datos.
3. OEntrenary tunear modelos.
4. Evaluar vs. métricas de negocio y técnicas.
5. Desplegar modelo a produccion.
6. Monitorear datos, métricas, errores.

7. Reentrenar y volver a desplegar (ciclo continuo).

Lo importante:

1. Pasar de un ciclo manual y ad-hoc a uno automatizado y reproducible (pipelines).
2. Cada paso idealmente versionado y testeado.

Componentes clave de MLOps

Pipelines de datos (ETL/ELT):

o Extraer, transformar, cargar datos de forma confiable.

Pipelines de entrenamiento:
o Jobs que entrenan modelos usando datos actualizados.

Pipelines de validacion:
o Chequear calidad de datos y performance del modelo antes de promoverlo.

Pipelines de deployment (CI/CD):
- Empaquetar y desplegar modelos / servicios de inferencia.
Monitoreo y alertas:

- Controlar el comportamiento en produccion (latencia, errores, drift).
> MLOps integra todo esto en un flujo automatico, no en scripts sueltos.

Cl/CD adaptado a ML

Cl (Continuous Integration):
Tests de cddigo: unidades, integracion.
Tests de datos: schemas, rangos, valores faltantes.
Tests del modelo: sanidad basica (métricas minimas, outputs validos).

CD (Continuous Delivery/Deployment):
Automatizar despliegue de:
Cddigo de pipelines (orquestadores).
Servicios de inferencia (APIs / endpoints).
Estrategias de rollout:
Canary, A/B tests, blue/green.

- Diferencia importante vs DevOps clasico:
Ademas de cddigo, hay que gestionar versionado de datos y modelos.

Entrenamiento continuo (Continuous Training)

ldea:
1. El modelo se reentrena de forma regular cuando:
- Llegan datos nuevos.

= Cambian las distribuciones.
Cambia una regla de negocio.

- Pipeline tipico de CT:
1. Detectar evento (nuevos datos / tiempo).
2. Ejecutar pipeline de entrenamiento.
3. Evaluar contra modelo actual.
.. Solo promover si mejora (gate de métricas).

Beneficio:

El modelo se mantiene alineado con la realidad sin hacerlo “a mano”.
Riesgo:

Si no hay buenos tests/monitoreo, podés romper produccion mas rapido.

Monitoreo de modelos en produccion

;Qué monitoreamos?
Métricas de negocio: conversion, engagement, churn, etc.
Métricas del modelo: accuracy, recall, calibration (donde se pueda medir).
Métricas de datos:

- Input drift: cambian las caracteristicas de los datos de entrada.

= Prediction drift. cambian las distribuciones de las predicciones.
Latencia y errores del servicio.

Ejemplo (Vertex Al / plataformas similares):
Configurar “model monitoring” para:
= Ver si cambian las distribuciones de features.
Disparar alertas cuando algo se sale de lo esperado.

- Sin monitoreo:
Tenés un modelo “a ciegas” que puede estar danando el negocio sin que nadie se entere.

“Rules of ML": priorizar el sistema sobre el
modelo

Regla 1: Empeza simple.
o Primero un modelo basico — validar pipeline y datos.

Regla 2: Inverti en el pipeline, no en hiper-optimizar el modelo al principio.
o La mayoria de las mejoras vienen de mejores datos /features.

Regla 3: Evita training-serving skew.
o Usar mismas transformaciones y features en entrenamiento y produccion.

o Loguear lo que ve el modelo en produccion.

Regla 4: No tires datos “viejos” sin pensar.

o Podés usar muestreo en vez de borrar, o al menos entender qué se pierde.

Regla 5: Medi todo desde el dia 1.

o Meétricas y logs pensados desde el disefio.

“Hidden Technical Debt” en sistemas de ML

Idea central (Sculley et al., NIPS 2015):

Los sistemas de ML acumulan deuda técnica oculta mas rapido que el software tradicional.

Fuentes tipicas de deuda:
Glue code y “pipeline jungle™
Muchos scripts, parches y conexiones fragiles.

Dependencias de datos:

- Cambia una columna y rompe todo el pipeline.
Feedback loops no controlados:

- El modelo afecta los datos futuros (ej: sistemas de recomendacion).
Configuraciones y parametros escondidos:

- Es dificil reproducir resultados o entender qué version esta en produccion.
Rol de MLOps:

Hacer explicito lo que antes era “magia”.
Estandarizar pipelines, versionar modelos/datos, poner tests y monitoreo.

